{"id":1124,"date":"2025-02-16T11:52:04","date_gmt":"2025-02-16T11:52:04","guid":{"rendered":"http:\/\/logicalday.site\/?p=1124"},"modified":"2025-02-16T16:50:53","modified_gmt":"2025-02-16T16:50:53","slug":"paper-review-modernbert","status":"publish","type":"post","link":"https:\/\/logicalday.site\/paper-review-modernbert\/","title":{"rendered":"[Paper Review] ModernBERT"},"content":{"rendered":"\n
Author<\/strong>: Benjamin Warner et al.
Institution<\/strong>: Answer.AI, LightOn, Johns Hopkins University, NVIDIA, HuggingFace<\/p>\n\n\n\nSummary<\/h2>\n\n\n\n
\n
\n\n\n\nIntroduction<\/h2>\n\n\n\n
\n
\n
\n
So, there are many drawbacks: 512 tokens limit, bad model design and vocab size, bad performance and computational efficiency.<\/li>\n<\/ul>\n\n\n\n\n